Package: funpca 9.0
funpca: Functional Principal Component Analysis
Functional principal component analysis under the Linear Mixed Models representation of smoothing splines. The method utilizes the Demmler-Reinsch basis and assumes error independence. For more details see: F. Rosales (2016) <https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0028-87F9-6>.
Authors:
funpca_9.0.tar.gz
funpca_9.0.zip(r-4.5)funpca_9.0.zip(r-4.4)funpca_9.0.zip(r-4.3)
funpca_9.0.tgz(r-4.4-any)funpca_9.0.tgz(r-4.3-any)
funpca_9.0.tar.gz(r-4.5-noble)funpca_9.0.tar.gz(r-4.4-noble)
funpca_9.0.tgz(r-4.4-emscripten)funpca_9.0.tgz(r-4.3-emscripten)
funpca.pdf |funpca.html✨
funpca/json (API)
# Install 'funpca' in R: |
install.packages('funpca', repos = c('https://lfrm.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:92ab27c7fa. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | OK | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
R-4.4-win | OK | Nov 05 2024 |
R-4.4-mac | OK | Nov 05 2024 |
R-4.3-win | OK | Nov 05 2024 |
R-4.3-mac | OK | Nov 05 2024 |
Exports:funpcafunpcaEstplot.funpcaprint.funpcasummary.funpca
Dependencies:ashbitopsBrobdingnagcliclustercolorspacedeSolvefansifarverfdafdsFNNggplot2gluegtablehdrcdeisobandkernlabKernSmoothkslabelinglatticelifecyclelocfitmagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpracmaR6rainbowRColorBrewerRcppRCurlrlangscalestibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Functional Principal Component Analysis | funpca-package |
Functional Principal Component Analysis | funpca |
Plot fitted components | plot.funpca |
funpca Summary | summary.funpca |